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Abstract

A balanced pattern of order 2d is an element P ∈ {+,−}2d, where both signs appear d times.

Two sets A,B ⊂ [n] form a P -pattern, which we denote by pat(A,B) = P , if A4B = {j1, . . . , j2d}
with 1 ≤ j1 < · · · < j2d ≤ n and {i ∈ [2d] : Pi = +} = {i ∈ [2d] : ji ∈ A \ B}. We say A ⊂ P[n] is

P -free if pat(A,B) 6= P for all A,B ∈ A. We consider the following extremal question: how large

can a family A ⊂ P[n] be if A is P -free?

We prove a number of results on the sizes of such families. In particular, we show that for some

fixed c > 0, if P is a d-balanced pattern with d < c log log n then |A| = o(2n). We then give stronger

bounds in the cases when (i) P consists of d + signs, followed by d − signs and (ii) P consists of

alternating signs. In both cases, if d = o(
√
n) then |A| = o(2n). In the case of (i), this is tight.

1 Introduction

A central goal in extremal set theory is to understand how large a set family can be subject to

some restriction on the intersections of its elements. Given L ⊂ N ∪ {0}, we say that a set family

A is L-intersecting if |A ∩ B| ∈ L for all distinct A,B ∈ A. Taking Lt = {s ∈ N : s ≥ t}, a

fundamental theorem of Erdős, Ko and Rado [6] shows that Lt-intersecting families A ⊂
([n]
k

)
satisfy

|A| ≤
(
n−t
k−t
)
, provided n ≥ n0(k, t). Another important theorem due to Frankl and Füredi [8] shows that

if L`,`′ := {s < ` or s ≥ k − `′}, then any L`,`′-intersecting family A ⊂
([n]
k

)
satisfies |A| ≤ cnmax(`,`′),

for some constant c depending on k, ` and `′. See [2], [3], [7], [9] for an overview of this extensive topic.

Here we are concerned with understanding the effect of restricting the pattern formed between elements

of a set family. A difference pattern or pattern of order t is an element P ∈ {+,−}t. Given such a

pattern P , let S+(P ) = {i ∈ [t] : Pi = +} ⊂ [t] and s+(P ) = |S+(P )|. Define S−(P ) and s−(P )

analogously. Two sets A,B ⊂ [n] form a difference pattern P if:

(i) A4B = {j1, . . . , jt} with j1 < · · · < jt, and

(ii) {i ∈ [t] : Pi = +} = {i ∈ [t] : ji ∈ A \B}.

We denote this by writing pat(A,B) = P . A family of subsets A ⊂ P[n] is P -free if pat(A,B) 6= P

for all distinct A,B ∈ A. In this paper we consider the following natural question: given a pattern P ,

how large can a family A ⊂ P[n] be if it is P -free?
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First note the following simple observation. If s+(P ) 6= s−(P ) then large P -free families exist. Indeed,

if |s+(P )− s−(P )| = m > 0 then the following families are P -free:

B1 = {A ⊂ [n] : |A| ∈ [0,m− 1] mod 2m}; B2 = {A ⊂ [n] : |A| ∈ [m, 2m− 1] mod 2m}.

Clearly either |B1| ≥ 2n−1 or |B2| ≥ 2n−1. We will therefore focus on the case when s+(P ) = s−(P ) =

d. We say that such patterns are d-balanced. For a balanced pattern P it is only possible that

pat(A,B) = P if |A| = |B|. Thus, our question on balanced patterns essentially reduces to a question

for uniform families. Given 0 ≤ k ≤ n, define

f(n, k, P ) := max
{
|A| : P -free families A ⊂

(
[n]

k

)}
.

Let f(n, k, d) = max{f(n, k, P ) : P is d-balanced}. We will also write δ(n, k, P ) and δ(n, k, d) for

the corresponding extremal densities, i.e. δ(n, k, P ) := f(n, k, P )/
(
n
k

)
, and δ(n, k, d) := f(n, k, d)/

(
n
k

)
.

Note also that if A ⊂
([n]
k

)
is P -free then the family Ac = {[n] \ A : A ∈ A} ⊂

( [n]
n−k
)

is also P -free.

Therefore f(n, k, P ) = f(n, n− k, P ) and it suffices to bound f(n, k, P ) for k ≤ n/2.

Our first aim is to prove a density result for d-balanced patterns of small order. That is, we will show

that for fixed d, any sequence of integers {kn}∞n=1 tending to infinity with n with kn ≤ n/2 satisfies

limn→∞ δ(n, kn, d) = 0. The condition that k is not fixed and tends to infinity with n will be crucial.

This is different from the case in the Frankl-Füredi Theorem, which tells us that we can take some

fixed k ≥ 2d−1, ` = k−d and `′ = d−1, and if A ⊂
([n]
k

)
with |A| = ω(nk−d) then there are A,B ∈ A

with |A4B| = 2d, i.e. A and B form a P -pattern for some d-balanced pattern P . Indeed, take any

fixed k := k(d) , and consider the family A0 ⊂
([n]
k

)
given by

A0 =
{
A ⊂ [n] :

∣∣∣A ∩ ((i− 1)n

k
,
in

k

]∣∣∣ = 1 for all i ∈ [k]
}
.

Then |A0| ≥ cknk for some absolute constant ck > 0, but it is easily seen that A0 does not contain the

pattern + +−−. Therefore, there does not exist a density theorem for d-balanced patterns in subsets

of
([n]
k

)
with fixed k, as in the Frankl-Füredi theorem.

Our first result shows that such a density theorem does hold for k growing with n.

Theorem 1. Given d, k, n ∈ N with 2k ≤ n and taking ad = (8d)5d and cd = 6d8−d we have

δ(n, k, d) ≤ adk−cd .

By our discussion above for fixed k we see that Theorem 1 is in a sense a ‘high-dimensional’ result.

Also note that Theorem 1 shows there is a constant c > 0 with the property that if P is a d-balanced

pattern with d ≤ c log log n and A ⊂ P[n] which is P -free, then |A| = o(2n).

Let IP(d) denote the d-balanced pattern consisting of d plus signs, followed by d minus signs. We refer

to these as interval patterns. Given the obstruction of IP(2) above, it is natural to ask for bounds on

f(n, k, IP(d)).

Theorem 2. Given d, k, n ∈ N with 2k ≤ n we have

δ(n, k, IP(d)) = O(d2k−1).
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In particular, families A ⊂ P[n] which are IP(d)-free for all d = o(
√
n) satisfy |A| = o(2n). Fur-

thermore, this turns out to be tight – if d ≥ c
√
n then there are IP(d)-free families A ⊂ P[n] with

|A| = Ωc(2
n).

Lastly, we consider the d-balanced pattern AP(d) consisting of alternating plus and minus signs, e.g.

AP(2) = + − +−. We refer to these as alternating patterns. Our next result proves a density result

for such patterns.

Theorem 3. Given d, k, n ∈ N with 2k ≤ n we have

δ(n, k,AP(d)) = O
(

log−1
( k
d2

))
.

Thus again, all families A ⊂ P[n] which are AP(d)-free for d = o(
√
n) satisfy |A| = o(2n). Unlike in

the case of the interval patterns, we do not know if this is tight.

Before closing the introduction, we mention some further results related to this topic. A family

A ⊂ P[n] is said to be a tilted Sperner family if for all distinct A,B ∈ A we have |B \ A| 6= 2|A \B|.
Equivalently, A is P -free for all patterns P with |S−(P )| = 2|S+(P )|. Kalai raised the question of

how large a tilted Sperner family A ⊂ P[n] can be. In [13], Leader and the second author proved that

such families satisfy |A| ≤ (1 + o(1))
(
n
n/2

)
, which is asymptotically optimal. For sufficiently large n,

the extremal families were also determined. In [14], the second author proved that this bound almost

still applies if we only forbid ‘tilted pairs’ A,B with a single pattern. It was shown that if A ⊂ P[n]

does not contain A,B ∈ P[n] with |B \ A| 6= 2|A \ B| for all distinct A,B ∈ A and satisfying a < b

for all a ∈ A \ B and b ∈ B \ A then |A| ≤ C
√
logn

(
n
n/2

)
, for some constant C > 0. This condition is

equivalent to A being P (d)-free for all patterns P (d) consisting of d + signs followed by 2d − signs.

This bound was recently improved by Gerbner and Vizer in [11]. They proved that such families

satisfy |A| ≤ C
√

log n
(
n
n/2

)
. No family is known for this problem with order more than C

(
n
n/2

)
.

Lastly, we mention a fascinating question raised by Johnson and Talbot [12] related to Theorem 1

(similar conjectures have been raised by Bollobás, Leader and Malvenuto [4], and Bukh [5]). Our

phrasing slightly differs from that in [12].

Question (Johnson–Talbot). Is it true that for any k ∈ N and α > 0 there is n0(k, α) ∈ N with the

following property. Suppose that n ≥ n0(k, α) and that A ⊂
( [n]
n/2

)
with |A| ≥ α

(
n
n/2

)
. Then there are

disjoint sets S ∈
( [n]
n/2−bk/2c

)
and T ∈

([n]\S
k

)
such that the family CT,S :=

{
S ∪ U : U ∈

(
T
bk/2c

)}
is

contained in A.

This is true for k = 3, but is already open for k = 4. In this case it is possible to guarantee that

|CT,S ∩ A| ≥ 5 for some T, S (note |CT,S | = 6 for k = 4). More generally, Johnson and Talbot [12]

proved that under the hypothesis above, |CT,S ∩A| ≥ 4 ·3(k−4)/3 for some T, S. We note the conclusion

that dense subsets of P[n] contain all small patterns (from Theorem 1) would immediately follow from

a positive answer to this question. Indeed, for k = 2d any set CT,S contains every d-balanced pattern.

Theorem 1 may be seen as giving (weak) evidence for the question: for k = 2d and any d-balanced

pattern P , there is T and S and sets A,B ∈ CT,S ∩ A with pat(A,B) = P .

Notation: Given a set X, we write P(X) for the power set of X and
(
X
k

)
= {A ⊂ X : |A| = k}.

Given integers m,n ∈ N with m ≤ n, we let [n] = {1, . . . , n} and [m,n] = {m,m+ 1, . . . , n}. We also

write (n)m for the falling factorial (n)m = n(n− 1) · · · (n−m+ 1).
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2 Small balanced patterns

In this section we prove Theorem 1. We will find it convenient to prove many of our results restricted

of the middle layer. We then simply write f(k, P ) for f(2k, k, P ), δ(k, P ) for δ(2k, k, P ), etc.. The

following simple observation is useful to move results between different layers of the cube.

Proposition 2.1. Let n,m, k, l ∈ N with m ≤ n, l ≤ k and k +m− l ≤ n. Let P be a pattern. Then

δ(n, k, P ) ≤ δ(m, l, P ).

Proof. Suppose A ⊂
([n]
k

)
is P -free with |A| = δ(n, k, P )

(
n
k

)
. Select two disjoint sets T and U of order

m and k− l uniformly at random (possible as k+m− l ≤ n). Then let AT,U = {A ∈
(
T
l

)
: A∪U ∈ A}.

As A is P -free, the set AT,U must also be P -free for all T,U , giving |AT,U | ≤ δ(m, l, P )
(
m
l

)
. However,

ET,U |AT,U | = δ(n, k, P )
(
m
l

)
. The result follows.

Our next two lemmas are the main steps in the proof of Theorem 1. Combined they will allow a

recursive bound for δ(k, d) based on bounds on δ(k′, d′) for k′ < k and d′ < d.

Lemma 2.2. Let d, k ∈ N with k1/2 ≥ 16 log k and let P be a d-balanced pattern with P1 6= P2d. Then

given any γ ∈ [16 log k
k1/2

, 1] we have

δ(k, P ) ≤ max
(
γ, 6
√
δ
(
dγ2k/64e, d− 1

))
.

Proof. Let γ be chosen as above and let A ⊂
([2k]
k

)
be P -free with |A| = α

(
2k
k

)
. If α ≤ γ then there

is nothing to prove, so we will assume that α > γ ≥ 16 log k
k1/2

. We will first show that there are many

pairs A,B ∈ A with |A4B| = 2. Indeed, given C ∈
( [2k]
k+1

)
let yC denote the number of A ∈ A with

A ⊂ C. Then we have∑
C∈( [2k]

k+1)

yC =
∣∣{(A,C) ∈ A×

(
[2k]

k + 1

)
: A ⊂ C

}∣∣ = |A|k ≥ αk
(

2k

k + 1

)
.

As for every pair A,B ∈ A with |A4B| = 2 there is a unique set C ∈
( [2k]
k+1

)
with A,B ⊂ C, we obtain∣∣∣{(A,B) ∈

(
A
2

)
: |A4B| = 2

}∣∣∣ =
∑

C∈( [2k]
k+1)

(
yC
2

)
≥
(

2k

k + 1

)(
αk

2

)

≥ α2k2

4
× 2k(2k − 1)

(k + 1)k

(
2k − 2

k − 1

)
≥ α2k2

2

(
2k − 2

k − 1

)
. (1)

The first inequality holds by the convexity of
(
x
2

)
and the second since αk − 1 ≥ αk/2 as α ≥ 2/k.

Now given 1 ≤ i < j ≤ 2k, let Ai,j := {A ∈ [2k] \ {i, j} : A ∪ {i}, A ∪ {j} ∈ A}. Note that from (1)

we have ∑
i<j

|Ai,j | =
∣∣{(A,B) ∈ A×A : |A4B| = 2

}∣∣ ≥ α2k2

2

(
2k − 2

k − 1

)
. (2)
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Also let αi,j and βi,j be defined so that |Ai,j | = αi,j
(
2k−2
k−1

)
and βi,j = (j − i)/2k. By (2) we find {i, j}

with αi,j ≥ α2

8 and βi,j ≥ α2

16 . Indeed, we have∑
{i,j}:αi,j<α2

8

|Ai,j |+
∑

{i,j}:βi,j<α2

16

|Ai,j | <
(

2k

2

)
α2

8

(
2k − 2

k − 1

)
+ 2k × α2

16
2k

(
2k − 2

k − 1

)
≤ α2k2

2

(
2k − 2

k − 1

)
.

Combined with (2) we see that a claimed pair {i, j} exists. Fix such a pair {i, j} and set B = Ai,j .
Now let X = [i + 1, j − 1] and Y = [n] \ [i, j] so that B ⊂

(
X∪Y
k−1

)
. Partition elements from

(
X∪Y
k−1

)
according to how they intersect X, for each ` ∈ [0, j − i− 2] letting

X` =
{
A ∈

(
X ∪ Y
k − 1

)
:
∣∣A ∩X∣∣ = `

}
.

Also let B` = B ∩X` and L =
{
` :
∣∣`− |X|2 ∣∣ ≤√|X| log

(
8
α

)}
. By Chernoff’s inequality we have

∑
`/∈L

|X`| ≤
α2

32

(
|X|+ |Y |
k − 1

)
.

Using that |B| = αi,j
(|X|+|Y |

k−1
)
≥ α2

16

(|X|+|Y |
k−1

)
this shows that

∑
`∈L
|B`
∣∣ ≥ |B| − α2

32

(
|X|+ |Y |
k − 1

)
≥ α2

32

(
|X|+ |Y |
k − 1

)
≥ α2

32

∑
`∈L
|X`|.

The last inequality here holds since the sets X` are disjoint subsets of
(
X∪Y
k−1

)
. Thus for some ` ∈ L

we have |B`| ≥ α2

32 |X`|. By averaging, we find a set U ⊂ Y with |U | = k − `− 1 such that the family

C =
{
C ∈

(
X
`

)
: C ∪ U ∈ B`

}
satisfies |C| ≥ α2

32

(|X|
`

)
.

To complete the proof, let Q denote the pattern obtained from P by removing P1 and P2d, i.e.

Q = P2 · · ·P2d−1. Note that as P1 6= P2d we see that Q is (d− 1)-balanced. We claim that C is Q-free.

Indeed, suppose C1, C2 ∈ C with pat(C1, C2) = Q. Then by definition of C and B = Ai,j we have{
Ca ∪ U ∪ {h} : a ∈ {1, 2}, h ∈ {i, j}

}
⊂ A.

If P1 = + we find pat(C1∪U∪{i}, C2∪U∪{j}) = P . If P1 = − we find pat(C1∪U∪{j}, C2∪U∪{i}) =

P . Thus C must be Q-free and

α2

32

(
|X|
`

)
≤ |C| ≤ δ(|X|, `, Q)

(
|X|
`

)
.

Take k′ =
⌊ |X|

2 −
√
|X| log

(
8
α

)⌋
. A calculation shows that |X|4 ≥

√
|X| log

(
8
α

)
+ 2 since α ≥ 16 log k

k1/2

and |X|+ 2 = βi,j2k ≥ α2k
8 . This gives

k′ ≥ |X|
2
−
√
|X| log

( 8

α

)
− 1 ≥ |X|

4
+ 1 ≥

⌈βi,jk
2

⌉
≥
⌈α2k

64

⌉
≥
⌈γ2k

64

⌉
.

Since ` ∈ L we have k′ ≤ ` ≤ |X| − k′. Using Proposition 2.1 we find that α2

32 ≤ δ(|X|, `, d − 1) ≤

δ(2k′, k′, d− 1) = δ(k′, d− 1) ≤ δ(dγ
2k
64 e, d− 1). Rearranging this gives α ≤ 6

√
δ(dγ2k64 e, d− 1).
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Our second lemma deals with the case where P starts and ends with the same signs.

Lemma 2.3. Let d ∈ N and let P be a d-balanced pattern with P1 = P2d. Then there are d1, d2 ≥ 1

with d1 + d2 = d such that the following holds. For every k1, k2 with 2k1 + k2 = k we have

δ(k, P ) ≤ max
(

2e−k1/12, 4δ(k1, d1), 4(3k1)
2d1δ(k2, d2)

)
.

Similarly for every k1, k2 with k1 + 2k2 = k we have

δ(k, P ) ≤ max
(

2e−k2/12, 4δ(k2, d2), 4(3k2)
2d2δ(k1, d1)

)
.

Proof. To begin, for each ` ∈ [0, 2d] let

c` =
∣∣{j ∈ [`] : Pj = +

}∣∣− ∣∣{j ∈ [`] : Pj = −
}∣∣.

As P is d-balanced and P1 = P2d, we have c2d−1 = −c1. Combined with the fact that c0 = c2d = 0 and

c` changes by exactly 1 as ` increases, we see that c2d1 = 0 for some 1 ≤ d1 ≤ d−1. Setting d2 := d−d1
and Q1 = P1 · · ·P2d1 , Q2 = P2d1+1 · · ·P2d it is easy to see that these patterns are d1-balanced and

d2-balanced respectively.

Now suppose that A ⊂
([2k]
k

)
with |A| = α

(
2k
k

)
and that A is P -free. We will prove the first bound

above as the second bound is proved identically. We will assume that α ≥ 2e−k1/12 as otherwise there

is nothing to show. Partition [2k] into two consecutive intervals I1 = [3k1] and I2 = [3k1 + 1, 2k].

For each ` ∈ I1 let Z` :=
(
I1
`

)
×
(
I2
k−`
)
. Let L =

{
` ∈ I1 : |` − 3k1/2| ≤

√
3k1 log

(
2
α

)}
. Note that

as |
⋃
`/∈L Z`| ≤

α
2

(
2k
k

)
by Chernoff’s inequality, we have |A ∩ Z`| ≥ α

2 |Z`| for some ` ∈ L. Fix such a

choice of ` and set Z := Z` and B = A ∩ Z` so that B ⊂ Z with |B| ≥ α
2 |Z|.

We will now prove that α satisfies

α ≤ max
(

4δ(|I1|, `, Q1), 4|I1|2d1δ(|I2|, k − `,Q2)
)
. (3)

To see this, we may assume that α ≥ 4δ(|I1|, `, Q1) as otherwise there is nothing to show. Consider

the set PQ1 given by

PQ1 =
{

(A,B) ∈ Z × Z : pat(A ∩ I1, B ∩ I1) = Q1 and A ∩ I2 = B ∩ I2
}
.

We will first show that |(B × B) ∩ PQ1 | ≥ α
4|I1|2d1

|PQ1 |. Indeed, for each D ∈
(
I2
k−`
)

let

E(D) :=
{
C ∈

(
I1
`

)
: C ∪D ∈ B

}
; PQ1(D) :=

{
C,C ′ ∈ E(D) : pat(C,C ′) = Q1

}
.

Noting that each C ⊂
(
I1
`

)
with |C| > δ(|I1|, `, Q1)

(|I1|
`

)
contains C,C ′ with pat(C,C ′) = Q1, we find

|PQ1(D)| ≥ |E(D)| − δ(|I1|, `, Q1)
(|I1|
`

)
. Combined these give

∣∣(B × B) ∩ PQ1 | =
∑

D∈(I1` )

|PQ1(D)| ≥
∑

D∈( I2
k−`)

(
|E(D)| − δ(|I1|, `, Q1)

(
|I1|
`

))
≥ α

4
|Z|, (4)
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The final inequality here holds since
∑

D∈( I2
k−`)
|E(D)| = |B| ≥ α

2 |Z| and α ≥ 4δ(|I1|, `, Q1). Lastly,

using that |PQ1 | ≤ |I1|2d1 |Z| together with (4), we obtain |(B × B) ∩ PQ1 | ≥ α
4|I1|2d1

|PQ1 |.

Now, from this bound we find a choice of C,C ′ ∈
(
I1
`

)
with pat(C,C ′) = Q1 such that the set

FC,C′ =
{
D ∈

(
I2

k − `

)
: C ∪D,C ′ ∪D ∈ B

}
satisfies |FC,C′ | ≥ α

4|I1|2d1
(
n2

k−`
)
. However, if D,D′ ∈ F with pat(D,D′) = Q2 then C ∪D,C ′ ∪D′ ∈ A

and pat(C ∪ D,C ′ ∪ D′) = Q1Q2 = P . As A is P -free we see FC,C′ ⊂
(
I2
k−`
)

is Q2-free. This gives
α

4|I1|d1
≤ δ(|I2|, k − `,Q2) and proves (3).

To complete the proof, note that as α ≥ 2e−k1/12, by definition of L we have ` ∈ L ⊂ [k1, 2k1] and

k − ` ∈ [k2, k2 + k1]. As |I1| = 3k1 and |I2| = 2k − 3k1 = 2k2 + k1, by Proposition 2.1 we find

δ(|I1|, `, Q1) ≤ δ(2k1, k1, Q1) = δ(k1, d1) and δ(|I2|, k − `,Q1) ≤ δ(2k2, k2, Q2) = δ(k2, d2).

Combined with (3) this completes the proof.

Proof of Theorem 1. We prove by induction on d that with ad = (8d)5d and cd = 6d8−d we have

δ(k, d) ≤ adk−cd . (5)

For d = 1 we have P = +− or P = −+ and A ⊂
([2k]
k

)
is P -free simply means that |A4B| 6= 2 for all

distinct A,B ∈ A. It is well known that such families satisfy |A| ≤ 1
k

(
2k
k

)
. Indeed, for each C ∈

( [2k]
k+1

)
let yC denote the number of A ∈ A with A ⊂ C. Then∑

C∈( [2k]
k+1)

yC =
∣∣{(A,C) ∈ A×

(
[2k]

k + 1

)
: A ⊂ C

}∣∣ = |A| × k.

However, if |A4B| 6= 2 for al distinctl A,B ∈ A we must have yC ≤ 1 for all C. Rearranging, we

obtain the claimed upper bound on |A|. This easily gives that (5) holds for d = 1.

We now prove the result for a d-balanced pattern P , assuming by induction that the theorem holds for

all d′-balanaced patterns with d′ < d. We can assume that k ≥ a1/cdd ≥ 168 as otherwise the statement

is trivial. We will first prove this when P begins and ends with different signs, using Lemma 2.2,

noting that in this range k1/2 ≥ 16 log k. To apply this, let γ = 8(ad−1)
1/2k−

cd−1
4 and note that

γ ≥ 8(ad−1)
1/2k−

1
4 ≥ 16(log k)k−1/2 since k1/4/ log k ≥ 1/32 ≥ 2(ad−1)

−1/2. Therefore we can apply

Lemma 2.2 to find

δ(k, P ) ≤ max
(
γ, 6

√
δ
(⌈γ2k

64

⌉
, d− 1

))
≤ max

(
8(ad−1)

1/2k−
cd−1

4 , 6

√
ad−1

(
ad−1k

1−
cd−1

2

)−cd−1
)

≤ 8(ad−1)
1/2k−

cd−1
4 ≤ adk−cd .

The second inequality here uses that Lemma 2.2 holds for d−1 by induction, the third that (ad−1)
−cd−1 ≤

1 and 1− cd−1

2 ≥ 1
2 and the last inequality uses that cd ≤ cd−1

4 .

We now move to the case where P starts and ends with the same signs. Given P let d1 and d2 be as

in Lemma 2.3 so that d1 + d2 = d with di ≥ 1. We will assume that d1 ≤ d2 as the other case follows
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similarly. Let us set k1 = dkβe where β =
cd2

2d1+cd1
. Set k2 = k − 2k1 ≥ k − 4kβ ≥ k − 4k1/2 ≥ k

2 for

k ≥ 26. Then by Lemma 2.3 we have

δ(k, P ) ≤ max
(

2e−k1/12, 4δ(k1, d1), 4(3k1)
2d1δ(k2, d2)

)
≤ max

(
2e−k

β/12, 4ad1r
−βcd1 , 4(6kβ)2d1ad2

(k
2

)−cd2)
≤ max

(
2e−k

β/12, 4ad1k
−βcd1 , 82d1+3ad2k

2d1β−cd2
)

≤ max
(

2e−k
β/12, 82d1+3ad2k

−
cd1

cd2
2d1+cd1

)
≤ adk−cd .

The first part of the final inequality here uses ad ≥ 2kcd for k ≤ (ad/2)1/cd and that e−k
β/12 ≤ k−cd

for k ≥ (ad/2)1/cd . The second part uses that 82d1+3ad2 ≤ ad and that since d = d1 + d2 and d ≤ 2d2
we have cd ≤ 12d28

−d ≤ 36d1d28−(d1+d2)

2d1+1 ≤ cd1cd2
2d1+1 ≤

cd1cd2
2d1+cd1

. This completes this case and the proof of

the theorem.

3 Interval patterns

In this section, we first prove Theorem 2. We then give several lower bounds for the case n = 2k

depending on value of d.

3.1 Upper Bound on δ(n, n/2, IP(d))

Proof of Theorem 2. Let m =
⌊
n
8d2

⌋
. We partition [n] into m intervals, [n] = I1 ∪ · · · ∪ Im with

|Ii| = b8d2c or |Ii| = d8d2e for all i ∈ [m].

Consider the following way of choosing elements from
( [n]
n/2

)
. First select a set T ⊂

( [n]
n/2−d

)
uniformly

at random. Let J =
{
i ∈ [m] : |Ii \ T | ≥ d

}
. As d < |Ii|/2, for every i ∈ [m] we have

P(i ∈ J) = P(|Ii \ T | ≥ d) > P(|Ii ∩ T | ≤ |Ii|/2) ≥ 1

2
.

If i ∈ J , further select a set Si ⊂
(Ii\T

d

)
uniformly at random, and set Ai = T ∪ Si. If i ∈ [m] \ J

simply set Ai = ∅.
Now for every i, j ∈ J with i < j, we have pat(Ai, Aj) = IP(d). Also for i /∈ J we have Ai /∈ A, since

|Ai| = 0 6= n/2. We conclude that there is at most one index i ∈ [m] with Ai ∈ A. Equivalently,

m∑
i=1

1Ai∈A =
m∑
i=1

∑
A∈A

1Ai=A ≤ 1.

This is true for any choice of T and Si’s, so in particular if we take the expectation on both sides, we

have
m∑
i=1

∑
A∈A

P(Ai = A) ≤ 1. (6)
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But as Ai /∈ A for i /∈ J , given any A ∈ A we get that P(Ai = A) = P(Ai = A|i ∈ J)P(i ∈ J) >
1
2P(Ai = A|i ∈ J). Rewriting (6), this gives

m∑
i=1

∑
A∈A

P(Ai = A|i ∈ J)

2
≤ 1. (7)

Lemma 3.1. Let A ∈
( [n]
n/2

)
be a fixed set. If |A ∩ Ii| ≥ |Ii|2 + d, then P(Ai = A|i ∈ J) ≥ 1

( n
n/2)

.

Proof. Indeed, P(Ai = A|i ∈ J) = Ni(A)
Ni

where

Ni(A) :=
∣∣∣{(Si, T ) : Si ∈

(
Ii
d

)
, T ∈

(
[n] \ Si
n/2− d

)
, Si ∪ T = A

}∣∣∣;
Ni :=

∣∣∣{(Si, T ) : Si ∈
(
Ii
d

)
, T ∈

(
[n] \ Si
n/2− d

)}∣∣∣.
However, we have

Ni(A)

Ni
≥

(
4d2+d
d

)(
8d2

d

)(
n−d
n
2
−d
) =

(4d2 + d)d(
n
2 − d)!n2 !

(8d2)d(n− d)!
≥

(n2 − d)!n2 !

2d(n− d)!
>

(n/2)!(n/2)!

(n)!
=

1(
n
n/2

) .

For a set A ∈
( [n]
n/2

)
, denote by G(A) =

∣∣{i ∈ [m] : |A ∩ Ii| ≥ |Ii|
2 + d

}∣∣. From Lemma 3.1 it follows

that for any given A, we have
∑m

i=1 P
(
Ai = A|i ∈ J

)
≥ G(A)× 1

( n
n/2)

. Together with (7), we obtain

∑
A∈A

G(A) ≤ 2

(
n

n/2

)
. (8)

We call a set A ∈
( [n]
n/2

)
bad, if G(A) < m/5. Otherwise, we say that A is good. Let B be the family of

all bad sets.

Lemma 3.2. |B| = o( 1
m

(
n
n/2

)
) for sufficiently large n.

Proof. For a uniform random choice of a set A ⊆
( [n]
n/2

)
, let Xi be a random variable, with Xi = 1 if

|A ∩ Ii| > |Ii|
2 + d, and Xi = 0 otherwise. Let Z = X1 + · · · + Xm. To prove the lemma, we need to

show that P(Z < m/5) = o( 1
m). By linearity of expectation, EZ = mEXi = mP(Xi = 1). Notice that

for every i 6= j, Xi and Xj are negatively correlated, since if A has many elements in one interval, it

is less likely to have many elements on another interval.

P(Xi = 0) =

∑4d2+d
i=0

(
8d2

i

)(
n−8d2
n/2−i

)(
n
n/2

) ≤ 1

2
+

∑4d2+d
i=4d2

(
8d2

i

)(
n−8d2
n/2−i

)(
n
n/2

) ≤ 1

2
+
d
(
8d2

4d2

)(
n−8d2
n/2−4d2

)(
n
n/2

) < 0.79.

The second inequality uses Stirling’s formula. Therefore P(Xi = 1) = EXi > 0.21. Using linearity of

expectation gives EZ =
∑m

i=1 EXi > 0.21m.

By a version of the Chernoff-Hoefding bound for negatively correlated variables [15], we deduce that

P(A ∈ B) = P(Z < 0.2m) < P(Z − EZ > 0.01m) = o( 1
m), finishing the proof.

9



Therefore, if |A| ≥ 2
m

(
n
n/2

)
, then |A \ B| = (1− o(1))|A|. Using (8), we see that

(1− o(1))
m|A|

10
≤

∑
A∈A\B

G(A) ≤
∑
A∈A

G(A) ≤
(
n

n/2

)
. (9)

Equivalently |A| = O( 1
m

(
n
n/2

)
) = O

(
d2

n

(
n
n/2

))
, as required.

3.2 Lower Bound on δ(n, n/2, IP(d))

For the lower bounds, we provide different lower bounds, depending on the range of d.

Theorem 4. The following hold:

(i) If d = o(
√
n), there is an IP(d)-free family A ⊆

( [n]
n/2

)
with |A| = Ω(max{ 1

nd ,
d2

n3/2 } ·
(
n
n/2

)
).

(ii) If d = c
√
n, there is an IP(d)-free family A ⊆

( [n]
n/2

)
with |A| = Ωc(

(
n
n/2

)
).

Proof. First we prove (i). For a set A ∈
( [n]
n/2

)
let S(A) :=

∑
i∈A i, the sum of the elements in A.

Observe that if pat(A,B) = IP(d) then 0 < |S(A) − S(B)| < nd. Thus for any 0 ≤ i ≤ nd − 1,

the family Ai :=
{
A ∈

( [n]
n/2

)
| S(A) ≡ i( mod nd)

}
forms an IP(d)-free family. By the pigeonhole

principle, we can find such i so that |Ai| ≥ 1
nd

(
n
n/2

)
.

To obtain the second bound from (i), note that if we choose a set A ∈
( [n]
n/2

)
uniformly at random,

E[S(A)] =
n(n+ 1)

4
. (10)

To calculate the variance, let

Xi =

{
1 if i ∈ A
0 if n /∈ A.

Then S(A) =
∑n

i=1 iXi. Now E[Xi] = 1
2 every i ∈ [n] and E[XiXj ] = 1

4(1− 1
n−1). Using this, we find

Var(S(A)) = E[(

n∑
i=1

iXi)
2]− E[

n∑
i=1

iXi)]
2 ≤

∑
i∈[n]

i2E[Xi] +
∑
i 6=j

ij
(
E[XiXj ]− E[Xi]E[Xj ]

)
≤
∑
i∈[n]

i2

2
≤ n3

2
. (11)

From (10) and (11) together, by Chebyshev’s inequality we get P(|S(A)− n(n+ 1)/4| ≤ n3/2) ≥ 1/2.

Equivalently, |{A ∈
( [n]
n/2

)
: |S(A) − n(n + 1)/4| ≤ n3/2}| ≥ 1

2

(
n
n/2

)
. By an easy averaging argument,

for some value m ∈ [n(n+1)
4 − n3/2

3 , n(n+1)
4 + n3/2

2 ].

|{A ∈
(

[n]

n/2

)
: S(A) ∈ [m− d2

2
,m+

d2

2
)}| ≥ 1

2(2n3/2/d2 + 2)

(
n

n/2

)
= Ω

( d2

n3/2

(
n

n/2

))
However, since two sets A,B ∈

(
n
n/2

)
with pat(A,B) = IP(d) have |S(A)−S(B)| > d2, this completes

the proof of (i).
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To prove (ii), let c > 0 be given and let d = c
√
n. Note that if pat(A,B) = IP (d) then for some i ∈ [n]

we have |A∩ [i]| ≥ |B∩ [i]|+d. This shows that A =
{
A ∈

( [n]
n/2

)
:
∣∣|A∩ [i]|− i/2

∣∣ < d/4 for all i ∈ [n]
}

is an IP (d)-free family. We will now show that |A| = Ωc(
(
n
n/2

)
).

To see this, it is convenient to identify elements of
( [n]
n/2

)
with certain walks. LetW0 denote the set of all

walks W = W0 · · ·Wn of length n on Z with W0 = Wn = 0 and which either increase or decrease by 1

in each step (i.e. |Wi−Wi−1| = 1 for all i ∈ [n]). Note that each walk W ∈ W0 naturally corresponds

to a subset of [n] of size n/2 consisting of those steps in [n] where the walk increases. Under this

correspondence, the set A corresponds to those walks in W0 which lie entirely in [−d/4, d/4].

Now select a walk W ∈ W0 uniformly at random. Letting T denote a value to be determined, consider

the following events:

A =
{
Wj ∈ [−d/4, d/4] for all j ∈ [n]

}
B =

{
Win/T ∈ [−d/12, d/12] for all i ∈ [T − 1]

}
Ci =

{
Wj ∈ [−d/4, d/4] for all j ∈

[(i− 1)n

T
,
in

T

]}
, where i ∈ [T ].

Also for i ∈ [T − 1] and ai ∈ [−d/12, d/12], let Bi(ai) denote the event Bi(ai) =
{
Win/T = ai

}
. We

will show that

PW∼W0

(
B ∧

∧
i∈[T ]

Ci

)
≥ c′ > 0, (12)

where c′ depends only on c. Since
∧
i∈[T ]Ci ⊂ A, this will prove the result.

To begin, note that we have

PW∼W0

(
B ∧

∧
i∈[T ]

Ci

)
≥

∑
a1,...,aT−1∈[−d/12,d/12]

PW∼W0

( ∧
i∈[T−1]

Bi(ai) ∧
∧
i∈[T ]

Ci

)
=

∑
a1,...,aT−1∈[−d/12,d/12]

PW∼W0

( ∧
i∈[T ]

Ci
∣∣ ∧
i∈[T−1]

Bi(ai)
)

× PW∼W0

( ∧
i∈[T−1]

Bi(ai)
)
. (13)

Let W(a, b) denote the collection of random walks of length n/T which start at a and end at b. Since

Ci depends only on {Wj : j ∈ [(i− 1)n/T, in/T ]}, taking a0 = aT = 0 we have

PW∼W0

( ∧
i∈[T ]

Ci
∣∣ ∧
i∈[T−1]

Bi(ai)
)

=
∏
i∈[T ]

PW∼W0

(
Ci
∣∣Bi−1(ai−1) ∧Bi(ai))

=
∏
i∈[T ]

PW∼W(ai−1,ai)

(
W lies entirely in [−d/4, d/4]

)
. (14)

Claim: For every a, b ∈ [−d/12, d/12] we have PW∼W(a,b)

(
W lies entirely in [−d/4, d/4]

)
≥ 1/2.

Let W(a) denote the collection of all walks of length n/T which begin at a. Let us select W from

W(a) uniformly at random and let Sn/T denote the final vertex. By the reflection principle for random
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walks, we have

PW∼W(a,b)(W exceeds d/4) = PW∼W(a)(W exceeds d/4|Sn/T = b)

=
PW∼W(a)(Sn/T = d/2− b)

PW∼W(a)(Sn/T = b)

=

( n/T
n/2T+(d/2−b)−a

)( n/T
n/2T+b−a

) ≤

( n/T
n/2T+d/3

)( n/T
n/2T+d/6

)
=

(n/2T − d/6)d/6

(n/2T + d/6)d/6
≤
(

1− dT

3n

)d/6
≤ e−d2T/36n.

Taking T = 72/c2 say, we find PW∼W(a,b)(W exceeds d/4) ≤ e−2 < 1/4. By symmetry, this gives

PW∼W(a,b)

(
W lies entirely in [−d/4, d/4]

)
≥ 1− 2× (1/4) = 1/2, as claimed.

Now by combining (14) together with the claim in (13) we find

PW∼W0

(
B ∧

∧
i∈[T ]

Ci

)
≥

∑
a1,...,aT−1∈[−d/12,d/12]

21−T × PW∼W0

( ∧
i∈[T−1]

Bi(ai)
)
. (15)

But letting bi := n
2T + ai − ai−1 for all i ∈ [T ] where a0 = aT = 0, we have

PW∼W0

( ∧
i∈[T−1]

Bi(ai)
)

=

∏
i∈[T ]

(n/T
bi

)(
n
n/2

) = Ωc,T (d1−T ).

The final inequality follows by Stirling’s approximation, using that bi ∈ [ n2T −
d
6 ,

n
2T + d

6 ] for all i ∈ [T ].

Combined with (15), this gives PW∼W0

(
B ∧

∧
i∈[T ]Ci

)
= Ωc,T (1) = Ωc(1), as required.

4 Alternating patterns

To begin, we prove an auxiliary lemma. Given x = (xi) and y = (yi) in [m]D we say that y d-dominates

x if |{i ∈ [D] : xi 6= yi}| = d and xi ≤ yi for all i ∈ [D].

Lemma 4.1. Let d,m,D ∈ N with 2md2 ≤ D. Suppose that C ⊂ [m]D does not contain x and y such

that y d-dominates x. Then |C| ≤ 2mD−1.

Proof. To begin, choose a set S ⊂ [D] with |S| = d and a vector z ∈ [m][D]\S uniformly at random.

For each i ∈ [m] let zS(i) ∈ [m]D denote the vector which agrees with z on coordinates in [D] \ S and

equals i everywhere else. Also let BS,z denote the combinatorial line BS,z := {zS(i) : i ∈ [m]}.
Now as C does not contain any d-dominating pairs, for any choice of S and z we have |C ∩ BS,z| ≤ 1.

Letting Xi denote the indicator random variable which is 1 if zS(i) ∈ C and 0 otherwise, this gives∑
i∈[m]

Xi ≤ 1.

Taking expectations over all choice of S and z, this gives∑
C∈C

P(C ∈ BS,z) =
∑
i∈[m]

∑
C∈C

P(zS(i) = C) ≤ 1. (16)
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However, an easy calculation gives that if C has ki entries i for all i ∈ [m], then

P(C ∈ BS,z) =
∑
i∈[m]

(
ki
d

)
mD−d

(
D
d

) .
This expression is minimized when all ki are as equal as possible. Thus

P(C ∈ BS,z) ≥ m
(D/m

d

)
mD−d

(
D
d

) = m
(D/m)d
mD−dDd

=
m

mD

∏
l∈[0,d−1]

(
1− l(m− 1)

D − l

)
≥ 1

mD−1

(
1−

∑
l∈[0,d−1]

l(m− 1)

D/2

)
≥ 1

mD−1

(
1− md2

D

)
≥ 1

2mD−1 .

The final line here used 2md2 ≤ D. Combined with (16) this gives |C|/2mD−1 ≤ 1, as required.

We are now ready for the proof of Theorem 3.

Proof of Theorem 3. By Proposition 2.1 it suffices to prove the theorem for n = 2k. Let m =

b log2(n/d
2)

2 c. For convenience we assume that n is divisible by m, with Km = n. Let [n] =
⋃K
i=1 Ii be a

partition of [n] where Ii = {(i−1)m+ 1, . . . , im} for all i ∈ [K]. Given a set T ⊂ [K], let T c = [K]\T
and let

BT := {A ⊂
⋃
i∈T c

Ii : |A ∩ Ii| 6= 1 for all i ∈ T c}.

Given B ∈ BT and x ∈ [m]T we also let B(x) := B ∪ {(i− 1)m+ j − 1 : i ∈ T, xi = j} and

CB := {B(x) : x ∈ [m]T }.

Note that for every A ⊂ [n] there is a unique T ⊂ [K], B ∈ BT and x ∈ [m]T such that A = B(x).

Thus we have the disjoint union (
[n]

n/2

)
=

⋃
T⊂[K]

⋃
B⊂BT

|B|=n
2
−|T |

CB. (17)

We will first show that almost all sets A in
( [n]
n/2

)
are of the form A = B(x) where T ⊂ [K] and

B ∈ BT with |T | ≥ mK/2m+1 = n/2m+1. To see this, given a set A ⊂ [n], let Ai = A ∩ Ii for all

i ∈ [K]. We will say that A ⊂ [n] is bad if T (A) = {i ∈ [K] : |Ai| = 1} satisfies |T (A)| ≤ m
2m+1K.

We claim that there are at most O(e−n
1/2/22n) sets are bad. Indeed, if we select A ⊂ [n] uniformly

at random, we have P(|Ai| = 1) = m/2m, which gives E(|T (A)|) = mK
2m = n

2m . As |Ai| = 1 for each

i ∈ [K] independently, by Chernoff’s inequality, we find that P
(
|T (A)| − n

2m ≤ −
n

2m+1

)
≤ e−

n
2m+1 . As

m ≤ log2(n/d
2)/2 ≤ log2 n

2 we find that P(A is bad) ≤ e−n1/2/2. Equivalently, |{A ⊂ [n] : A is bad}| =
O(e−n

1/2
2n).
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Now suppose that T ⊂ [K] with |T | ≥ n/2m+1 and B ∈ BT . Note that given x,y ∈ [m]T , if y

d-dominates x then pat(B(x), B(y)) = AP(d). Noting that as m = blog2(n/d
2)/2c we have |T | ≥

n/2m+1 ≥ 2md2 ≥ 2md2. Setting D = |T |, Lemma 4.1 therefore shows that any A ⊂
( [n]
n/2

)
which is

AP(d)-free satisfies

|A ∩ CB| ≤ 2m|T |−1 =
2

m
|CB|. (18)

Summing over all T ⊂ [K] and B ∈ CT , combined with (17) and (18), this gives

|A| ≤
∑
T⊂[K]

|A ∩
⋃

B∈BT
|B|=n/2−|T |

CB| ≤
∣∣{A ⊂ [n] : A bad

}∣∣+
∑

T⊂[K]:
|T |≥2md2

∑
B∈BT

|A ∩ CB|

≤ O
( 2n

e
√
n/2

)
+

∑
T⊂[K]:
|T |≥2md2

∑
B∈BT

|B|=n/2−|T |

2

m
|CB|

≤ 2 + o(1)

m

(
n

n/2

)
.

This completes the proof of the theorem.

5 Concluding remarks and open problems

In this paper we proved bounds on the size of families A ⊂ P[n] which avoid a d-balanced pattern P .

Our proof shows that such families satisfy

|A| = O(adn
−cd2n),

where ak = (8d)5d and cd = 6d8−d. In particular, families A which avoid a d-balanced pattern with

d < c log log n satisfy |A| = o(2n) for some absolute constant c > 0. It would be interesting to improve

the density bound here and/or extend the range of d for which this zero density property holds.

Another interesting question is the following: which balanced pattern P has the strongest effect on

the density of P -free families A ⊂ P[n]? That is, what is minP δ(n, k, P ), where the minimum is taken

over all balanced patterns P? If instead of patterns we only forbid intersection sizes (as discussed

in the Introduction) then there are a number of very strong density results for subsets of P[n]. For

example, the Frankl-Rödl [10] theorem shows that given ε > 0, if A ⊂ P[n] and |A ∩ B| 6= t for some

εn ≤ t ≤ (1/2− ε)n then |A| ≤ (2− δ)n, where ε = ε(δ) > 0. It would be very interesting to know if

there exists a pattern which forces a superpolynomial density in n. That is, does there an increasing

sequence of naturals (nk)k∈N and balanced patterns (Pk)k with δ(nk, nk/2, Pk) = n
−ωk(1)
k for some

function ωk(1) tending to infinity with k?

Lastly, how large can d be (as a function of n) while still giving δ(n, n/2,AP(d)) → 0 as n → ∞.

Theorem 3 proves that this holds for any d = o(
√
n).
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